310. Concerning the Hydroxyazo-Quinonehydrazone Equilibrium of a Trisazonaphthalene with an [18]Annulene Perimeter Macrocyclic Aza Compounds, III¹)

by Peter Skrabal, Jürg Steiger and Heinrich Zollinger

Technisch-Chemisches Laboratorium Eidgenössische Technische Hochschule Zürich

(4. IX. 76)

Summary. The hydroxyazo-quinonehydrazone equilibrium of the cyclic trisazonaphthalene **1** has been determined from the ¹H-NMR. spectrum of the ¹⁵N-labelled compound. The size of the coupling constant $J_{15_{N,H}}$ demonstrates that the equilibrium of **1** with respect to the non-cyclic reference compound **6** is shifted towards the hydroxyazo form by factors of at least 5.1 and 3.9 in DMSO and H₂O, respectively.

1. Introduction. – Our continued interest in macrocyclic azo compounds²) led us to consider the trisazonaphthalene **1** which has been synthesized by *Allan et al.* [2]. The macrocycle **1** may formally be regarded as an annelated derivative of the hypothetical hexaaza[18]annulene **2**. Representatives of this class of π -equivalent azaannulenes are of interest principally because, in contrast to π -excessive azaannulenes they are virtually unknown³).

In carbocyclic and π -excessive benzoannulenes and annulenes fused to naphthalenes and higher benzenoid π -electron systems the diatropism of the parent compound is reduced or even quenched completely by annelation⁴). The closest known carbocyclic analogue to the trisazonaphthalene **1** is the trisdehydro[18]annulene **3** which, in contrast to its parent compound **4**, does not sustain a diamagnetic ring current [4]. However, the electronic spectrum of **3** is very similar to that of diatropic **4**⁵). Thus, the macrocyclic perimeter of **1** would be expected to be atropic. But the electronic spectrum is consistent with the cyclic chromophore [2].

2. Problem. – We were interested in determining whether or not the hydroxyazoquinonehydrazone equilibrium of 1 is dominated by the hydrazone tautomer as is the case for azonaphthols in general and particularly for 2-phenylazo-1-naphthols 5 [5][6 and references therein]. If it is assumed that delocalization of π -electrons – to whatever degree – in the macrocyclic perimeter of 1 is rendered more difficult in the hydroxyazo form, provided the 18-membered perimeter significantly contributes to the π -electron energy. To detect such a contribution, a knowledge of the equilibrium position of an acyclic reference compound is required. For this purpose the bisazonaphthalene 6, which most probably has the conformation shown below, was chosen.

Part II: see [1].

²) See [1].

³⁾ Porphyrines and phthalocyanines are diatropic hybrids between π -equivalent and π -excessive electron systems in the sense that both their 18- and 16-membered perimeters contribute to their delocalized electronic ground states. For a recent review see [3].

⁴⁾ See [3] and references therein.

⁵) This of course is no contradiction, since two different probes for the electronic structure are used.

To determine the equilibrium positions of **1** and **6** we used as a criterion the size of the coupling constant $J_{15_{N,H}}$ [7]. This is not the most sensitive technique, but other spectroscopic methods (*e.g.* UV./VIS. spectroscopy) require derivatives of both tautomers which were unavailable⁶).

HMO calculations did not indicate a significant contribution of the macrocyclic perimeter to the π -electron energy of 1⁷). Its ¹H-NMR, spectrum had been assigned on the basis of chemical shifts to the pure hydrazone [2]. However, the arguments were not convincing.

3. Syntheses. – The macrocycle **1** (* $N = {}^{15}N$) and the reference compound **6** were synthesized from ${}^{15}N$ -labelled 1,8-aminonaphthol-3,6-disulfonic acid according to the method of *Allan et al.* [2]⁸). ${}^{15}N$ -1,8-Aminonaphthol-3,6-disulfonic acid was obtained according to known methods [8] using ${}^{15}N$ -nitric acid.

⁶) For a detailed discussion see [6].

⁷⁾ We thank Prof. F. Gerson (Universität Basel) for these calculations.

⁸⁾ We wish to thank Dr. Z. J. Allan for his personal advice during his stay in our laboratory.

Helvetica Chimica Acta - Vol. 59, Fasc. 8 (1976) - Nr. 310

Solvent	1	$\delta_{ m NH}$	$J_{^{15}\mathrm{N,H}}$
DMSO-d ₆	14N	16.43	_
	¹⁵ N	16.30	95.0
H_2O	^{14}N	16.36	-
	^{15}N	16.38	96.5

Table 1⁹). ¹H-NMR. data of **1** in DMSO-d₆ and H₂O

Table 2. ¹ H -NMR. data of 6 in DMSO-d ₆ and H_2O			
Solvent	6	$\delta_{ m NH}$	J _{15_{N, H}}
DMSO-d ₆	^{14}N ^{15}N	16.75, 17.15 16.45, 16.75	- 101.0, 100.1
H ₂ O	¹⁴ N ¹⁵ N	16.86 16.96	

4. Results and Discussion. – The relevant ¹H-NMR. data of labelled and unlabelled trisazonaphthalene **1** are summarized in Table 1. The observed coupling constants correspond within the limit of error to the typical value of 96 Hz for a ¹⁵N-H bond of an sp²-hybridized nitrogen atom [7]. Furthermore we note that the coupling constants in the reference compound **6** (Table 2) exceed this typical value by *ca.* 4–5 Hz. This difference we attribute to well established solvent and substituent effects¹⁰). If the experimental error of ± 1.2 Hz is taken into account, the coupling constant in **6** may be as large as 102.2 Hz. If this value corresponds to 100% hydrazone of our model compound **6** and therefore of the macrocycle **1**, we can calculate using equation (1) [9] and an average coupling constant $J_{15_{N,H}} = 100.7$ Hz (observed) that **6** exists as at least 98.5 (± 1.1)% hydrazone in both solvents. Similarly the coupling constants of the macrocycle **1** correspond to a small solvent dependent shift of the equilibrium to 93.0 (± 1.0) and 94.4 (± 1.0)% hydrazone in DMSO and H₂O, respectively.

$$J_{\rm obs}/J_{15_{\rm N,H}} \cdot 100 = \% \text{ hydrazone}$$
(1)

$$K_{\rm T} = \frac{[\rm Azo]}{[\rm Hydrazone]} = \frac{J_{15_{\rm N,H}} - J_{\rm obs}}{J_{\rm obs}}$$
(2)

The same assumptions and use of equation (2) [10] lead to $K_{T(DMSO, H_2O)} \leq 1.5 \cdot 10^{-2}$ for **6**, whereas for **1** $K_{T(DMSO)} = 7.6 \cdot 10^{-2}$ and $K_{T(H_2O)} = 5.9 \cdot 10^{-2}$. Thus the tautomeric equilibrium of **1** is shifted towards the hydroxyazo form by factors of *ca*. 5.1 and 3.9 with respect to the reference compound **6**. It is tempting therefore to conclude that the contribution of the macrocyclic perimeter to the π -electron energy of **1** is of the order of 3.5–4.1 kJ mol⁻¹ (*ca*. 0.9 kcal mol⁻¹). Provided of course that our assumptions are correct and the observed shifts are not the result of employing a model which is too crude, the above factors represent minimum values. Even so, we should point out that in agreement with expectations the contribution of the 18membered perimeter to the π -electron energy is virtually negligible.

⁹) Tables 1 and 2: Chemical shifts in ppm from internal TMS; coupling constants in \pm 1.0 Hz (Table 1), \pm 1.2 Hz (Table 2); H₂O solutions contained *ca*. 10% DMSO-d₆ for locking.

¹⁰⁾ See [7] and references therein.

Experimental Part

General. ¹H-NMR. spectra were recorded on Varian XL-100 (Varian AG, Zug) and Bruker WH-90 (Technisch-Chemisches Laboratorium, ETHZ) FT-spectrometers using saturated solutions (ca. 2-4 mg/0.5 ml). For labelling purposes 14.8 m nitric acid of 99% ¹⁵N-isotopic purity (Stohler Isotope Chemicals, Innerberg) was used. Paper chromatography was carried out on Wathman No. 1 paper using isoamylalcohol/pyridine/10% NH₄OH 1:1:1 as cluent.

¹⁵*N*-1,8-*Aminonaphthol-3,6-disulfonic acid* (*H-acid*). H-Acid was synthesized according to [8] with certain modifications. In the nitration of naphthalene-3,6,8-trisulfonic acid the recommended 62% nitric acid was substituted by the equivalent amount of 14.8 m ¹⁵N-nitric acid. For the alkali melt 9.64 g ($8.4 \cdot 10^{-3}$ mol) ¹⁵N-1-naphthylamine-3,6,8-trisulfonie acid, 2.7 g NaOH and 2.7 ml H₂O were heated in an autoclave for 3 h at 180°. Dilution of the cold melt with 20 ml H₂O and work-up [8] yielded 2.27 g H-acid (76%, nitrite titration, 25% yield with respect to naphthalene) (Rf = 0.1).

¹⁵*N*-*Bisazonaphthalene* **6**. Modifications of procedure [2]: To 0.870 g $(1.93 \cdot 10^{-3} \text{ mol})$ ¹⁵*N*-H-acid, 0.020 g Na₂SO₃ and 1.5 ml H₂O, cooled in an ice bath, were added with stirring 0.20 ml 10 M NaOH, 0.212 g Na₂CO₃ and 1.00 g freshly purified tosylchloride. After addition of 0.26 ml 10 M NaOH the mixture was stirred for 2 h at RT., filtered and the filtrate acidified with conc. hydrochloric acid (Congo red). Scratching the sides of the reaction vessel with a glass rod led to precipitation of 0.720 g (40% yield, nitrite titration) ¹⁵N-(O-tosyl)-H-acid. Paper chromatography (Rf = 0.5) showed no impurities.

0.720 g $(0.77 \cdot 10^{-3} \text{ mol})$ ¹⁵*N*-(O-tosyl)-H-acid were dissolved in 5 ml H₂O and 0.20 ml 0.1 M Na₂CO₃, acidified with 0.62 ml conc. hydrochloric acid and diazotized with 7.7 ml 0.1 M NaNO₂ in an ice bath. The diazonium salt was coupled by addition of 0.346 g $(0.77 \cdot 10^{-3} \text{ mol})$ ¹⁵*N*-H-acid in a solution of 0.90 g Na₂CO₃ in 5 ml H₂O. After acidification with 1 ml conc. hydrochloric acid and addition of 2.0 g NaCl it was again diazotized with 7.7 ml 0.1 M NaNO₂. For coupling this solution was mixed with a further 0.346 g ¹⁵*N*-H-acid in 5 ml H₂O, 0.31 ml pyridine and 0.90 g Na₂CO₃. It was then acidified with 1 ml conc. hydrochloric acid and the volume was reduced to 20% of the original. O-Tosylated **6** (0.85 g) was precipitated by addition of 100 ml EtOH (Rf = 0.12).

Detosylation was accomplished by heating with 20 ml H₂O and 0.20 g Na₂CO₃ for 3 h. The solution was concentrated and acidified with 1 ml conc. hydrochloric acid. Precipitation with 3 times the volume of EtOH yielded 0.44 g $\mathbf{6}$ (Rf = 0.04).

¹⁵N-*Trisazonaphthalene* **1**. 0.36 g **6** were diazotized in 10 ml H₂O with 3.3 ml 0.1 M NaNO₂ and 1.8 ml 2 M HCl at RT. Excess HNO₂ was destroyed after 1 min with a small amount of sulfamic acid, the solution diluted with 300 ml H₂O and 8 ml 1 M Na₂CO₃ added immediately. After 1 h the solution was concentrated to 15 ml and ¹⁵N-trisazonaphthalene **1** precipitated with 25 ml EtOH. After dialysis of the inorganic material the yield was 0.117 g (14% with respect to ¹⁵N-(O-tosyl)-H-acid; Rf = 0.07).

REFERENCES

- [1] P. Skrabal & M. Hohl-Blumer, preceding paper.
- [2] Z. J. Allan & J. Podstata, Tetrahedron Letters 1968 (1941); Z. J. Allan, J. Podstata & J. Jarkovský, Coll. Czech. chem. Commun. 34, 282 (1969).
- [3] P. Skrabal, in International Review of Science, Organic Chemistry Series Two, Vol. 3, Aromatic Compounds, 229 (H. Zollinger, editor), Butterworths, London 1976.
- [4] K. Endo, Y. Sakata & S. Misumi, Tetrahedron Letters 1970, 2557; Bull. chem. Soc. Japan 44, 2465 (1971).
- [5] R. L. Reeves & R. S. Kaiser, J. org. Chemistry 35, 3670 (1970).
- [6] J. Steiger, ETH Zürich, Dissertation No. 5193 (1973).
- [7] Th. Axenrod, in Nuclear Magnetic Resonance Spectroscopy of Nuclei other than Protons, 81 (Th. Axenrod & G. A. Webb, editors), John Wiley, New York 1974.
- [8] H. E. Fierz-David & L. Blangey, Grundlegende Operationen der Farbenchemie, 203, Springer-Verlag, 8th edition, Wien 1952.
- [9] G. O. Dudek & E. P. Dudek, J. Amer. chem. Soc. 88, 2407 (1966).
- [10] V. Békarek, K. Rothschein, P. Vetesnik & M. Vecera, Tetrahedron Letters 1968, 3711.